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What You Like, What I Have: Online Dating
Recommendation via Matching Individual

Preferences with Features
Xuanzhi Xheng, Guoshuai Zhao, Li Zhu, and Xueming Qian

Abstract—Dating recommendation becomes a critical task since the rapidly development of the online dating sites and it is beneficial
for users to find their ideal relationships from a large number of registered members. Different users usually have different tastes when
choosing their dating partners. Therefore, it is necessary to distinguish the user’s personal features and preferences in dating
recommendation methods. However, present approaches don’t capture enough user preferences from social graph and attribute data.
They also ignore user attributes, which is the complementary and consistent side information of user social graphs. In this paper, we
propose a Matching Individual Preferences with Features (MIPF) model to recommend dating partners jointly using user attributes and
social graphs. We aim to model user features and preferences to identify what user has and what user likes. We also distinguish user
preferences into explicit preference and implicit preferences. The implicit preferences are mined from social graphs, while the explicit
preferences are captured from the social links. Additionally, convolutional neural networks are used to extract the latent non-linear
information in user attributes. Experiments on real-world online dating datasets demonstrate our MIPF model is superior to existing
methods.

Index Terms—Recommender system, Dating recommendation, Preference embedding, Social network.
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1 INTRODUCTION

ONLINE dating sites such as ShiJiJiaYuan1, Match.com2,
EliteSingles3, have developed rapidly and have a large

number of registered members. According to a recent survey
[1], nearly 40 million single people (out of 54 million) in
USA have signed up with Match.com, eHarmony4 and other
online dating sites to seek potential romance. About 20% of
committed relationships began online, which is more than
through any means other than meeting through friends. In
our case, ShiJiJiaYuan is the most popular online dating site
in China. There are more than 17 million registered users
with rich personal information.

Users upload their self-introductions and then seek for
serious relationships. They can follow other users to track
their social dynamic. This interaction between users consti-
tutes the user social networks. There are too many registered
users on the dating sites. As a result, it is impractical
for users to find their right people from a huge number
of online users. Dating recommendation methods are fre-
quently implemented to alleviate information overload. A
well-performed dating recommendation method is what
online dating sites desperately need. In the related research
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Fig. 1: An illustrative example of MIPF’s working principle.
User’s feature and preference embeddings are computed
with the social networks and user attributed information.

about online dating, many works focus on data mining, user
behavior analysis and mate preference modeling. Hitsch et
al. [2] studied the economic mechanisms underlying match
formation and the formation of marriages using an online
dating dataset. They estimated a model of mate preferences
and used the Gale-Shapley algorithm to approximate the
observed online matching patterns. Su et al. [3] attempted to
differentiate the gender-specific mate preferences and reveal
the factors affecting potential mate choice by analyzing the
user behavioral data of a large online dating site. Kleiner-
man et al. [4] introduced and evaluated the use of ”recipro-
cal explanations” for explanation method in in reciprocal en-
vironments includintg the online-dating domain. For online
dating recommendation task, the most of existing methods
are based on collaborative filtering approaches. Akehurst et
al. [5] reformed the content-collaborative method for recip-
rocal dating recommendation. The approach used similarity
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between user profiles and the interaction history of the
similar users to produce the final recommendations.

In friend recommendation, which is a similar task to
dating recommendation, multiple methods are used to pre-
dict unknown friendship, including matrix factorization,
collaborative filtering, and deep neutral network. SoRec [6]
is a probabilistic matrix factorization approach for Social
Recommendation. This method employed the shared user
latent factors to solve the data sparsity and poor predic-
tion accuracy problems. Rendle et al. [7] transformed the
friend recommendation problem into a rank task. They
presented a generic optimization criterion and a learning
algorithm for personalized ranking. Zhao et al. [8] proposed
a collaborative-filtering model calculating the taste and at-
tractiveness of users to predict the stable matches.

The existing dating recommendation methods face two
main challenges: lacking of comprehensive user preference
modeling and an appropriate way to fuse social graphs and
attributes data. Distinguishing user features and preferences
may be beneficial to improving the performance of per-
sonalized dating recommendation. From our perspectives,
compared with the high similarity of user features, the
match between preferences and features among users is
more important when measuring the matching degree of
users in dating recommendation. At the same time, fusing
two different modalities, social graphs and attribute infor-
mation, is beneficial for model to achieve high-accuracy
performance.

In this paper, we design the MIPF method for dating
recommendation which defines user feature embeddings to
model the user individual information and user preference
embeddings to depict the characteristics user prefer. We
mine the explicit and implicit preference from explicit social
links as adjacency matrices and social graphs. The latent
topology structures in social graphs are encoded as the
implicit preference of users. To enhance the learning of user
representations, we use convolutional neural networks to
learn the non-linear latent patterns in user attributes and
employ graph implicit constraint module to capture the
higher order proximity information of the input relation
networks. We conduct experiments and compare MIPF with
several state-of-art baseline methods on datasets collected
from ShiJiJiaYuan dating site. Empirical results demonstrate
the effectiveness and rationality of MIPF. The contributions
of this paper are as follow:

• We propose a Matching Individual Preferences with
Features (MIPF) model for online dating recommen-
dation. Our model fuses user attributes and social
graphs to learn user feature and preference represen-
tations respectively.

• We divide the user preferences into implicit and ex-
plicit preferences. The implicit preferences are mined
from social graphs, while the explicit preferences are
captured from the social links.

• Additionally, we use two CNNs to extract the latent
information in user attributes. The statistical results
on datasets prove the vital role of user attributes
in recommendation. Experiments demonstrate our
model significantly outperforms existing methods.

2 RELATED WORK

In this section, we review several studies about dating
recommendation, and then we briefly introduce the recent
research focused on social graph representation learning in
recommender systems.

2.1 Dating Recommendation

The researches about online dating are more focused on
data mining, user behavior analysis and mate preference
modeling. Most of the existing online dating recommenda-
tion methods are traditional machine learning approaches,
such as matrix factorization. The deep learning architecture
which has proved to be effective in the recommender sys-
tems has not been used.

Collaborative filtering transforms the relationship be-
tween users into a real-valued rating matrix, and utilizes
collaborative filtering approaches to predict the probabilities
of unknown relationships. Zhao et al. [8] proposed a new
collaborative-filtering model which considered taste of users
in picking others and their attractiveness in being picked by
others in bipartite and reciprocal social networks. Akehurst
et al. [5] proposed CCR, a new content-collaborative recip-
rocal recommender. It calculated similarity between user
profiles to find users who are similar to the target user. The
interaction history of similar users helped the collaborative
filtering method to produce the final recommendations. Li
and Li [9] analyzed the characteristics of reciprocal online
dating recommendations. They proposed a generalized re-
ciprocal recommendation framework which captured user
mutual preferences and bipartite relation networks. Xia et
al. [1] presented a recommendation system and inteoduced
a similarity measure that captured the unique features of
the online dating networks. The results of their algorithm
on a real-world dataset showed the collaborative filtering-
based algorithms outperformed than content-based algo-
rithms in dating recommendation. Since the dating recom-
mendation datasets may contain the textual information
of users and their interaction message, natural language
processing methods can also be introduced into the dating
recommendation field to extract latent features of textual
data. Tu et al. [10] designed a two-side matching framework
for online dating recommendation. It contained a Latent
Dirichlet Allocation [11] to learn the user preferences from
the observed user messaging behaviors and user profile
features.

Friend recommendation which is similar to the dating
recommendation task has attracted much attention in the
past decade. The methods of friend recommendation can
be divided into three categories: classification, fitting, and
ranking [12]. The classification methods shift friend rec-
ommendation problems into binary classification problems
and train a classifier to predict the unknown friendships.
Typical classification approaches such as support vector
machine, decision tree classifier and logistic regression have
been applied to recommendation task. Benchettara et al. [13]
employed a decision tree classifier to make the predictions
of the co-authorship likelihood. Gong et al. [14] predicted
new and missing links in Google+ using support vector
machine.
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Fitting methods [15] [16] regard the friend relationships
between users as a rating matrix, and predict the likelihood
of unknown friendships though matrix factorization [17]
[18] and other approaches. Although many existing CF
methods mainly focus on the rated items and the context
of users to improve recommendation performance, Yang
et al. [19] only used the user-item rating matrix without
any additional information to make recommendations ac-
curately, efficiently and serendipitously. They designed a
novel method, CSII, to tackle the unrated items and find
the candidate item sets. The item sets included the latent
interesting items, latent satisfying items and serendipitous
items of users. Zhang et al. [20] proposed a Kernel-based
Attribute-aware Matrix Factorization model called KAMF
which exploited the rich attribute information and social
links of users to alleviate the rating sparsity effect and
tackle the cold-start problems. Zhao et al. [21] proposed a
unified matrix-factorized framework with considering four
social network factors to predict user-service rating. He et
al. [22] proposed a topic community-based method via Non-
negative Matrix Factorization (NMF). NMF constrained the
two factorized matrices to be non-negative and had a better
performance compared with MF in non-negative data.

Both the friend recommendation datasets and the dat-
ing recommendation datasets are imbalance between the
amount of observed relationships and the unobserved ones.
This causes the classification or fitting methods to be biased
towards negative prediction. Hence, the ranking methods
have been introduced to solve the imbalance issue. The
ranking methods calculate the probability of friendships
for both observed and unknown relationships. The model
attempts to predict the probability of observed relationships
larger than that of the unknown or negative relationships.
Bayesian Personalized Ranking is the maximum posterior
estimator derived from a Bayesian analysis of the problem.
Krohn-Grimberghe et al. [23] and Rendle et al. [7] integrated
Bayesian Personalized Ranking (BPR) with matrix factor-
ization and showed that BPR provided superior results in
combating the imbalance issue.

Recently, deep neural network (DNN) has achieved
success in many fields such as image classification, natu-
ral language processing and data mining. Compared with
traditional machine learning methods, DNN like convolu-
tional neural network with properly designed structure and
careful parameter optimization shows superior advantages.
Based on the superiority of DNN architecture, several works
[24] [25] [26] introduced DNN into the recommendation
field, and it has proved to be effective. Ding et al. [25]
proposed a BayDNN model by combining Bayesian Per-
sonalized Ranking and Deep Neural Networks. It extracted
latent structural patterns from the input network data and
used the Bayesian ranking to make friend recommenda-
tions. Rafailidis et al. [26] proposed a deep pairwise learning
model based on a Bayesian personalized ranking strategy
for friend recommendations. The deep pairwise network
learned the non-linear deep representations of the location-
based social networks.

2.2 Social Network Representation Learning
There are many studies about learning low-dimensional
representations of nodes in networks. Unsupervised repre-

sentation learning approaches typically exploit the spectral
properties of various matrix representations of graphs, es-
pecially the Laplacian and the adjacency matrices. Several
dimensionality reduction techniques have been proposed
[27] [28] [29]. However, these methods suffer from both
computational and statistical performance drawbacks. The
expense of matrix eigendecomposition limits these methods
to scale to large networks. Moreover, the optimization objec-
tives of these methods are not robust to be applied to other
networks with different structures.

Inspired by the recent advancements in representational
learning for natural language processing, simulation ran-
dom walk methods [30] [31] [32] explore a new way for
discrete node feature learning. These methods encode the
random walk transition matrices and minimize the dis-
tances of node embeddings if they are neighbors in the input
graphs. Perozzi et al. [33] proposed a novel approach for
learning latent social representations. It used random walks
to generate node sequences from graphs, then treated them
as sentences though Skip-Gram. Node2vec [34] learned
a mapping of nodes to a low-dimensional space of fea-
tures that maximizes the likelihood of preserving network
neighborhoods of nodes. It combined breadth-first sampling
and depth-first sampling. Instead of performing simulated
walks on the networks, LINE [35] designed a clear objec-
tive function to optimize both first-order and second-order
graph proximities.

Deep neural networks (DNN) are well known for their
advantages in non-linear function learning. Wang et al. [36]
introduced DNN to capture the highly non-linear topology
structures of networks. Abu-El-Haija [30] proposed a novel
objective function, named Graph Likelihood. This approach
explicitly modeled the structural information captured from
sampled random walks as a function of node representa-
tions. However, these random-walk embedding works only
investigate the topological structure. Attributed network
embedding methods [37] [38] [39] that takes both attribution
and relational information into account have been proposed.
Zhang et al. [40] proposed a neighbor enhancement autoen-
coder and attribute-aware skip-gram model named ANRL
to capture network structures and node attribute informa-
tion. Huang et al. [31] used random walk on attributed
networks, and implemented a graph neural network archi-
tecture to conduct attributed network embeddings.

3 METHODOLOGY

Problem Definition. Our method aims to recommend dat-
ing partners for users in online dating sites. The user re-
lationship network can be naturally represented as a ho-
mogeneous attributed network G = (V,E,X), where V
is a set of nodes representing users, E is a set of directed
edges denoting the relationships between users and X is a
matrix that encodes all user attribute information. Our aim
is to represent each user i ∈ V as two low-dimensional
vectors fi ∈ Rd , pi ∈ Rd as user feature and preference
embeddings calculated from social graphs and links. d is
the dimension of the learned embedding. In this paper, we
use capital variables (e.g., A) to denote matrices and lower-
case variables (e.g., a) to denote row vectors. For example,
we use ai to mean the ith row of the matrix A, and aij to
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Fig. 2: The overview of our proposed model MIPF

refer to the element of ith row and jth column of the matrix
A.

In this section, we will introduce how to learn user
features and preferences which eventually identify what
user has and what user like. We will show our model in
four aspects: 1) Dating partner predictor, which is used to
predict the score of dating candidates. 2) Node attribute
encoder, which aims to learn user explicit preferences and
conduct node embeddings. 3) Graph implicit constraint,
which aims to capture user implicit preferences from topo-
logical structure and represent them in node embeddings.
4) Loss function, which fuses the loss function of graph im-
plicit constraint and the prediction loss function to train all
modules simultaneously. The architecture of our approach
is shown in Figure 2.

3.1 Dating Partner Predictor

The dating partner predictor module aims to predict the
score sui ∈ [0, 1] of user u and user i according to their fea-
ture and preference embeddings. The score is the probability
of that u will take interested in i.

To recommend candidate user i to user u as a dating
partner, we verify whether user u likes the features of user
i or not. The match score is calculated by the inner product
of the preference embedding pu of user u and the feature
embedding fi of i:

sui = pu · (fi)T (1)

Furthermore, the match score matrix among all users
denotes S. We can clearly see that sui is different from siu
both in the value and the latent meaning.

3.2 Node Attribute Encoder

The role of node attribute encoder module is to learn the
user’s feature and preference embedding from his attribute
information. The attribute information of user u will be

onehot processed as the input xu ∈ {0, 1}n, where n is
the length of processed input. The output of node attribute
encoder is the feature embedding fu ∈ Rd and preference
embedding pu ∈ Rd of user u. Two convolutional neural
networks are used to capture the latent structural patterns
from the input data. CNN is an effective neural architecture
for feature mapping. It is widely used in visual recogni-
tion, target detection, pattern recognition and so on. We
introduce 1D CNN in our model which is often used in
sequence processing and natural language processing task,
and it has been considered quite effective. Two CNNs are
used to enhance the learning of user feature and preference
embeddings respectively. They have the same structure but
won’t share parameters. We will show details of the feature
encoder CNN.

Denote the input attribute data of user u as xu, the result
of the convolutional layer c is calculated as:

c = tanh(W ∗ xu + bias) (2)

where the W and bias denote the parameters of CNN

Fig. 3: The detail of node attribute encoder
filters. tanh is used as the non-linear and non-negative
function for activation. The results of the convolutional layer
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will be sent to the pooling layer to aggregate features and
reduce the dimension. We use max function to implement
pooling operation, and the outputs of the pooling layer can
be written as:

h = pool(c) (3)

In order to enhance the ability of node attribute encode
to capture the high-level structural patterns in user attribute
data, we repeat the combination of a convolution layer and
a pooling layer three times. The input of each convolutional
layer is the output of the last pooling layer. We denote l as
the l-th layer of the node attribute encoder. For the l-th layer,
we have:

hl = pool(tanh(W l ∗ hl−1 + biasl)) (4)

After three times loop of the convolution layer and the
pooling layer, the dimension of output vectors is shorter
than that of user feature embedding we expected. We add
a linear layer and anactivation function to transform the
vector dimension. The final feature embeddings can be
written as:

fu = ReLU(W l+1 ∗ hl + biasl+1) (5)

3.3 Graph Implicit Constraint

The graph implicit constraint module mins the latent topo-
logical information contained in social graphs. It fuses the
latent topological information into user preference embed-
dings as implicit preferences. We adopt simulation random-
walk approaches in the graph implicit constraint module to
learn the representations of nodes. Simulation random-walk
approaches are inspired by recent advancements in learning
embedding vectors for words. They sample many random
walks from graphs. If two nodes are frequently close in the
random walks, they would have large similarity in the em-
bedding space. Different from the previous methods, Abu-
El-Haija et al. [30] associated edges with a function of node
embeddings and proposed a novel objective function, the
graph likelihood, which contrasted statistics from random
walks with non-existent edges. They used the node co-
occurrence matrix D ∈ R|V |×|V | to represent the correlation
between two nodes. D recorded the times of co-visited
between pairs of nodes in all stochastically random walks on
the graph. The graph likelihood objective is improved from
the Maximum Likelihood Estimate of Logistic Regression:

max
∏

(u,i)∈E

sui
∏

(u,i)/∈E

(1− sui) (6)

We define that the indicator function 1[.] evaluates to
1 if its boolean argument is true. The adjacency matrix
A ∈ {0, 1}|V |×|V | can be constructed according to aui =
1[(u, i) ∈ E]. The Equation 6 can be equivalently written as:

max
∏

u,i∈V
s
1[(u,i)∈E]
ui (1− sui)1[(u,i)/∈E] (7)

To improve generalization of link-prediction, the range of
neighbor-sets of nodes is extended beyond the set of node
direct connections via random walks according to recent

studies. The binary edge presence 1[(u, i) /∈ E] can be re-
placed by simulated random walk statistic matrix D. The
graph likelihood can be formulated as:

max
∏

u,i∈V
σ(sui)

dui(1− σ(sui))aui (8)

where the σ denotes sigmoid activation function. The graph
likelihood objective function pushes the model score sui
close to 1 if dui is large and pushes it towards 0 if there
is no edge between node u and i.

However, there are many hyper-parameters in random
walks algorithm, which have to be manually tuned for
every graph. Graph Attention Models [41] replaced the fixed
hyper-parameters with trainable ones which were learned
in training process automatically. In particular, Graph At-
tention Models added attention mechanism to get analytical
expression forE[D], the expectation of co-occurrence matrix
D. After replacing D with E[D] and taking the negative log
of the graph likelihood for avoiding quadratic computation,
the Negative Log Graph Likelihood (NLGL) can be written
as:

min
∑

u,i∈V
−E[dui]log(σ(sui))− aui(1− σ(sui)) (9)

In our proposal, the matrix E[D] between users is cal-
culated to capture the structural information. NLGL loss
is introduced as a part of objective function which is an
implicit constraint for user preference embedding learning.

3.4 Loss Function

In our method, the social links between users can be re-
garded as the user explicit preferences, while the potential
structural information hidden in the social graph is consid-
ered as the implicit preferences. In the Graph Implicit Con-
straint module, our model mines user implicit preferences
with the constraint of the NLGL loss function. We propose
prediction loss to learn the user explicit preferences.

For each user u, the other users can be divided into
three disjoint sets, a set with positive dating partners
Pu = {i|i ∈ V, (u, i) ∈ E}, a set with negative dating
partners Nu and a set of unobserved users Ku. In addition,
Pu ∪ Ku = {i|i ∈ V, (u, i) /∈ E}. The positive user set
and a part of negative set are constructed according to the
user interaction records in datasets, and the other part of
negative user set is generated through negative sampling.
The remaining users have unknown relationships with user
u, thus we classify them as unobserved users Ku. The
matrix M ∈ {−1, 0, 1}||V ||∗||V || can be defined according
to mui = 1 when i ∈ Pu, mui = 0 when i ∈ Ku, and
mui = −1 when i ∈ Nu. We will explain the details of how
we divide the user sets and how we implement the negative
sampling in EXPERIMENTS section.

The prediction loss is to maximize the score of positive
dating partners and minimize that of negative dating part-
ners. It can be formulated as :

Lp = −‖σ(S) ◦M‖1 (10)

where ◦ is the Hadamard product, the function ‖ · ‖1 of
a matrix is the sum of its entities. To combined with the
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graph implicit constraint modules, we rewrite our NLGL
loss function as :

NLGL = −‖E[D] ◦ log(σ(S)) + ‖A− 1‖ ◦ log(σ(1− S))‖1
(11)

Our final objective is to minimize the sum of the prediction
loss and NLGL loss:

L=−α‖σ(S)◦M‖1−‖E[D]◦log(σ(S))+‖A−1‖◦log(σ(1−S))‖1
(12)

where α is the weighting coefficient to balance the predic-
tion loss and NLGL loss. We adopt the stochastic gradient
algorithm for optimizing Equation 12. We iteratively opti-
mize all the parameters until the model convergency.

4 EXPERIMENTS
4.1 Datasets
The two datasets we used are from the ShiJiJiaYuan website
(https://www.jiayuan.com/), one of the most famous on-
line dating sites in China. Up to now, it has more than 300
million users. Compared with other online dating websites,
it has a large number of users with comprehensive and
effective user profiles. Moreover, the interaction records
between users are showed on the website, which is the
basic of constructing user social graphs. While most of other
online dating websites do not revealed the social relations
of users.

4.1.1 ShiJiJiaYuan Data Mining Competition Dataset
(SDMCD)
The dataset is provided by ShiJiJiaYuan Company for the
first data mining competition for college students56. It con-
tains anonymized profiles and heterosexual dating interac-
tion records of more than 50,000 users in city Hangzhou dur-
ing a period of 3 months. It contains 344,522 male users and
203,843 female users. Each user owns 34 personal features,
which are showed in detail in table 2. The above profiles are
filled in by users according to their wishes. If some fields in
profiles that users are unwilling to fill in, it will be showed
as ”inconvenient to disclose”. After statistics, the average
number of valid fields for each user is 17.22.

The dataset contains over 8,600,000 interaction records.
The user interaction records can be divided into three cate-
gories: recommendation, click, and message. Recommenda-
tion records represent that the system recommended a user
to another user. Click records indicate that a user clicked
and browsed the homepages of the user recommended by
the system. Message records indicate that a user messaged
to other users after browsing their homepage. For instance,
the system recommends user B and C to user A when A
visits the ShiJiJiaYuan site. A is interested in B and clicks to
view the homepage of B. After that, A has further interest
and sends messages toB. There are three interaction records
between A and B belonging to recommendation, click, mes-
sage categories respectively, and a record between A and C
belonging to recommendation category. The proportion of
these each category to the total interaction records is shown
in Table 1.

5. https://github.com/Zhengbaibai/ShiJiJiaYuan-Competition-
Dataset

6. https://cosx.org/2011/03/1st-data-mining-competetion-for-
college-students/

TABLE 1: The proportion of three categories of interaction
records in SDMCD.

Categories Recommendation Click Message

Proportion 97.29% 2.14% 0.57%

We compute the conversion probability between these
three categories. The results are shown in the figure 4. Only
2.2% of user pairs with recommendation records have the
subsequent click records. The user pairs with click records
have 27% chance to perform message action, which much
higher than the probability from recommendation records
to click records. Hence, we regard user pairs who only have
recommendation records as wrong recommendations. The
click records and the message records can be merged as cor-
rect recommended user pairs. Considering the training time

Fig. 4: The probability of having subsequent actions

and the runtime memory requirements of our method and
baselines, we use a random selection method to generate
a small dataset with 15,669 users. The profiles of users are
completely retained. For the interaction records, they are
retained if the users in records are all selected in the small
dataset. There are 180,816 interaction records was reserved
in the final small dataset.

4.1.2 ShiJiJiaYuan Crawled Dataset(SCD)
The dataset is crawled from the ShiJiJiaYuan site. It contains
11,069 anonymous active user profiles and 20,419 their
interaction records which are all open to registered users.
The dataset has 3,146 male users accounting for 28.04% and
7,923 female users. Each user profiles have 64 fields. Some of
fields are required for user such as age, sex, marital status,
and so on. Other fields like jobs, fitness frequency, education
level and family members can be omitted according to
the user’s willing. The user relationships in SCD are the
records of following action in the ShiJiJiaYuan site. Users can
follow other users and track their newest social dynamics.
It should be noted that a following action denotes a direct
relationship.

Moreover, we conduct a statistical analysis on SCD to
study the effect of user attributes in selecting dating part-
ners. Firstly, we count the average follower number of user
groups divided by different fitness frequency. The follower
number represents the user popularity in dating market.
In figure 5(a), it is shown that the follower number raises
with the increasing fitness frequency. It means users tend to
pick the dating partners who are keen on fitness. Secondly,
we explore the relationship between user popularity and
their housing conditions. From figure 5(b), we can get the
conclusion that the popularity of users is closely related to
their housing conditions. People owning a house are more
popular in the dating market. Living with parents or friends
will decreases their attractiveness. In addition, we find that
there is difference between men and women’s preferences in
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TABLE 2: Statistics of Datasets.

Dataset #User #Social relation #Profile fields #Average filled fields #Male percentage #Female percentage

SDMCD 548,365 8,600,000 21 17.22 62.8326% 37.1673%
SCD 11,069 20,419 64 38.82 28.0427% 71.9573%

TABLE 3: self-description features in ShiJiJiaYuan Crawled Dataset.

scalar categorical

age match age sex zodiac smoking car status occupation match belief exercise habit
height match height pet nation drinking blood group constellation match education live with parents

salary children housework schedule company type match location match marriage status
location siblings education house status marriage status registered residence

(a) Fitness frequency analysis. (b) Housing condition analysis. (c) Monthly salary analysis.

Fig. 5: Average user follower number with different attributes on SCD.

some specific attributes such as monthly income, showed in
figure 5(c). Men with high monthly salary are more popular
in dating market, while the different income of women
makes no difference. These statistical results evidently con-
firm that user attributes contain abundant information and
play a vital role in modeling user representations.

4.2 Comparison Methods

In recent years, most of dating recommendation works
use non-public datasets with additional information, which
makes it impossible for us to reproduce and compare them
with MIPF on SCD and SDMCD. Therefore, we compare
MIPF with two types of state-of-the-art methods, covering
friend recommendation methods and network embedding
algorithms. Friends recommendation methods contain fit-
ting approaches, FM [42], and ranking approaches, BPRMF
[43] and BayDNN [25]. Four network embedding methods,
LoNGAE [44], PRRE [45], NGCF [46], Graph Attention
Model [41], are also trained to generate recommendations
by computing the cosine similarities between users.

1) FM [42]: A basic factorization machine for predic-
tion problem, which can mimic most factorization
models just by feature engineering. Menon and
Elkan et al. [47] proposed to solve the link predic-
tion problem by using factorization machines and
regarding positive links as 1 and the others as 0.

2) BPRMF [7]: BPRMF is a matrix factorization model
relying on bayesian loss optimization, which is
the maximum posterior estimator derived from a
Bayesian analysis of personalized ranking. Both the-
oretical and empirical results indicate the effective-
ness of BPRMF for the field of personalized ranking.

3) LoNGAE [44]: An autoencoder architecture for link
prediction, which has the capability to learn ex-
pressive non-linear latent node representations from

both local graph neighborhoods and explicit node
features.

4) PRRE [45]: PRRE is an attributed network embed-
ding method to exploit the partial correlation be-
tween node topology and attributes, which affects
the actual proximity among nodes in the embedding
space.

5) BayDNN [25]: BayDNN combines Bayesian Person-
alized Ranking and Deep Neural Network for friend
recommendation. A convolutional neural network
is integrated to extract latent deep structural fea-
ture representations. And a Bayesian personalized
ranking learning algorithm is used to captures user
preferences based on the extracted deep features.

6) NGCF [46]: Neural Graph Collaborative Filter-
ing (NGCF) is a new recommendation framework,
which integrates the user-item interactions with the
embedding learning process in the form of a bi-
partite graph and exploits the graph structure by
propagating embeddings on it. By leveraging the
expressive modeling of high-order connectivity in
user-item graph, NGCF effectively injects the col-
laborative signal into the embedding process in an
explicit manner.

7) Graph Attention Model [41]: Graph Attention
Model is a state-of-the-art graph embedding
method, which learns the context distribution in
graph embedding methods via an attention mech-
anism, and replaces the hyper-parameters with
trainable models to learn the best suited hyper-
parameters for graphs automatically. It has been
shown to achieve substantially improvement on link
prediction tasks.
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TABLE 4: Performance comparison on AUC and AP.

Methods SCD SDMCD

AUC AP @P1 @P5 @P10 AUC AP @P1 @P5 @P10

PRRE 0.592308 0.420605 0.070596 0.318711 0.619945 0.541793 0.447266 0.042764 0.261150 0.574055
BPRMF 0.588795 0.641575 0.189856 0.410212 0.606237 0.678500 0.715266 0.260270 0.544129 0.699794

LoNGAE 0.646378 0.617912 0.187966 0.344089 0.693882 0.690565 0.648130 0.204657 0.389631 0.652046
FM 0.654159 0.688491 0.275873 0.520904 0.706648 0.757021 0.747234 0.329358 0.545009 0.667346

BayDNN 0.717075 0.702463 0.288608 0.644619 0.854982 0.713433 0.728658 0.264152 0.630950 0.798525
NGCF 0.784034 0.781208 0.269886 0.647727 0.809659 0.833769 0.827644 0.230078 0.755176 0.860938

Graph Attention Model 0.804417 0.824549 0.530500 0.759424 0.870802 0.819113 0.837645 0.461287 0.785311 0.903426
MIPF(Ours) 0.831626 0.859338 0.558602 0.767649 0.875600 0.852843 0.859331 0.467030 0.809847 0.905152

%Improv. 3.27% 4.21% 5.29% 1.08% 0.55% 2.28% 2.58% 1.24% 3.12% 0.19%

4.3 Implementation

The user profiles in the two datasets contains various fields,
which is comprehensive description of users. However,
some fields are omitted by most of users. Some fields are
free text, which is difficult to process as the scalar and
categorical data. Considering sparse attribute representa-
tions will increase memory usage and decrease the model
performance, we conduct a preliminary analysis of these
attributes and delete some fields manually according to their
importance and sparsity. There are 21 and 16 fields reserved
in SDMCD and SCD. We perform One-Hot processing to
convert the Chinese categorical options and numeric data in
user profiles into vectors containing only 0 and 1.

As user interaction records, we use negative sampling
techniques. In SDMCS, each user who is clicked or sent
messages by other users can be regarded as a positive
sample. We randomly sample K users which are not in-
teracted with this user or only recommended to this user.
In SCD, we regard a user which is followed by a user as
a positive sample. And we also randomly select K users
as negative samples from all users except positive users.
Then we rank the candidate user list which consists of
one positive user and K negative users. We minimize the
loss function Equation 12 to make the model rank positive
samples higher than negative samples. In our experiments,
the length of candidate user lists is 20. K in training set
is 1 and in testing set is 19. For MIPF and baselines, we
randomly select 80% positive samples for the training set,
and 20% positive samples for the testing set. To ensure all
users appear in training set, in the process of dividing the
training and testing set, we first check whether users in
interaction records have appeared in the training set. If not,
they will be directly classified into the training set, otherwise
they will be divided randomly.

For matrix factorization methods, FM and BPRMF, we
use interaction records by regarding the positive samples as
1 and negative samples as 0. For graph embedding meth-
ods without considering node attributes, such as Graph
Attention Model, NGCF and BayDNN, they only use social
graphs as input and use CNN or randomly walk algorithms
to learn user representations. The prediction of dating part-
ners is generated though the inner product of the user
representations. For attributed graph embedding methods,
such as LoNGAE and PRRE, they learn user embeddings
incorporating node attributes and topology structure of so-
cial graphs. The hyper-parameters of comparative methods
are used as the default settings in shared source code,
include FM, BPRMF, PRRE, LoNGAE, NGCF and Graph

Attention Model. The source code of BayDNN does not
shared, so we implement it by ourselves and set the initial
hyper-parameters according to the paper of BayDNN. The
dimension of user embedding is set to 64 and batch size is
32 in BayDNN on both datasets.

In our MIPF method, we use random seed as 66478
to initialize the weight parameters in convolutional neural
networks. The weighting coefficient α is 0.0000001 on SCD,
and 0.000001 on SDMCD. Dimension of user feature and
preference embeddings varies from 8 to 128 depending on
the complexity of datasets, specifically, we choose 8 as d on
SCD and 128 on SDMCD. Batch size for both two datasets is
32. The experiments are conducted on a machine with one
GPU (NVIDIA RTX-2080Ti) and one CPU (Intel Xeon CPU
E5-2620).

4.4 Results and Discussions
The experiment results on SCD and SDMCD datasets are
illustrated in Table 4. According to Table 4, we have several
observations.

First, our approach can consistently outperform all com-
pared baseline methods. On SCD and SDMCD, MIPF out-
performs the best baseline Graph Attention Model respec-
tively by 3.27% and 2.28% in terms of ACU. Although Graph
Attention Model introduces attention machine in simulation
random walk to capture the higher order proximity informa-
tion of social graphs with trainable hyperparameters, they
have a disadvantage that they do not take the side infor-
mation into account. Our approach designs a node attribute
encoder module and the prediction loss function to extract
the latent information in user attributes. Thus, our approach
achieves better performance. BayDNN method combines
deep neural network for feature representation learning
and adopt Bayesian personalized ranking to optimize the
method. Compared with BayDNN, our approach not only
takes advantage of the user attributes but also learns a
better social graph structure representation. The superior
performance of our approach demonstrates graph structure
and node attributes are consistent and complementary in-
formation for dating recommendation, and it is important
to design an effective graph representation algorithm.

Second, choosing the right graph representation learning
algorithm is important to dating recommendation perfor-
mance. PRRE is an attributed network embedding method
to exploit the partial correlation between node topology
and attributes. The experiments show that it not a suit-
able method for dating recommendation cause the attribute
data and topology of social graphs in our datasets are
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TABLE 5: Ablation study results on AUC, AP and P@n.

Methods SCD SDMCD

AUC AP @P1 @P5 @P10 AUC AP @P1 @P5 @P10

BPRMF 0.588795 0.641575 0.189856 0.410212 0.606237 0.678500 0.715266 0.260270 0.544129 0.699794
BPRMF-2 0.596959 0.646679 0.189513 0.411583 0.606923 0.724453 0.769324 0.354204 0.611178 0.735424
MIPF-A-2 0.637188 0.613786 0.315970 0.471899 0.665867 0.668893 0.672681 0.236288 0.569807 0.730399
MIPF-G-2 0.804417 0.824549 0.530500 0.759424 0.870802 0.819113 0.837645 0.461287 0.785311 0.903426
MIPF-AG 0.801323 0.817145 0.526388 0.744688 0.866690 0.819290 0.789203 0.308199 0.778753 0.900617

MIPF-AG-2 0.831626 0.859338 0.558602 0.767649 0.875600 0.852843 0.859331 0.467030 0.809847 0.905152

consistent and complementary. LoNGAE is an autoencoder
architecture, which learns latent node representations from
both graph neighborhoods and node features. However,
the performance of LoNGAE is lower than other baselines
with only using graph structure information. This might
be due to the model is not suitable for our task scenario.
BayDNN uses convolutional neural network to extract la-
tent deep structural feature representations, and Graph
Attention Model takes advantage of simulation random
walk to capture the higher order proximity information of
network structure. These two methods both achieve good
performance. It has proved that convolutional neural net-
work and random walking are both effective methods to
capture topology structure in graphs.

Third, FM and BPRMF are matrix factorization based
algorithms. Compared to these traditional methods with
shallow architecture or limited levels of feature extraction,
deep neural networks like CNN with properly designed
structure and careful parameter optimization achieve supe-
rior advantages.

4.4.1 Ablation Study.
To demonstrate the effectiveness of distinguish user’s fea-
ture and preference embeddings, we compare MF and MIPF
with single embedding for a user and with feature and
preference embedding respectively. We also want to verify
that the combination of implicit preference captured from
social graph and explicit preference extracted from user
adjacency matrix will significantly improve the performance
of our MIPF model.

In summary, the experiment configurations are detailed
below:

1) BPRMF:BPRMF model with single user embedding.
2) BPRMF-2:BPRMF model with user feature and pref-

erence embeddings respectively.
3) MIPF-A-2: MIPF model only uses user attributes as

input data.
4) MIPF-G-2:MIPF model only uses social graph as

input data.
5) MIPF-AG: MIPF model with single user embedding

and used social graph and user attributes as input
data.

6) MIPF-AG-2:MIPF model with user feature and pref-
erence embedding respectively. It uses social graph
and user attributes as input data.

In order to make a fair comparison, the dimensions of
user representation vectors in the above experiment are
8 and 128 on SCD and SDMCD. The results of ablation
study are showed in Table 5. The performance comparison
of BPRMF and BPRMF-2, as well as MIPF-AG, MIPF-AG-2

prove the effectiveness of distinguishing feature and prefer-
ence embedding in the dating recommendation. The com-
parison of MIPF-AG-2 with MIPF-A-2 and MIPF-G-2 shows
that the AUC value is improved from 63.7% and 80.4% to
83.1% on SCD. The prominent improvement demonstrates
user attributes and graph structure information are comple-
mentary. The fusion of these two modalities can help our
model achieve a relatively significant improvement. When
comparing MIPF-A-2 and MIPF-G-2, the performance gap
of these two variants is very significant, which indicates
social graph are more effective in dating recommendation
task. It may due to the fact that user pairs recommended by
MIPF-A-2 are difficult to meet on dating sites because of the
large number of members. While user pairs recommended
by MIPF-G-2 are easier to recognize because of the near
distance in social graphs.

4.4.2 Discussion on the hyperparameter α.

We explore the influence of hyperparameter α, which is the
weighting coefficient of NLGL loss and prediction loss in
Equation 12. Experimental results about hyperparameter α
are shown in Figure 6. We can see that α has a high impact
on the performance of MIPF. In order to find the optimal
value of α, we change the order of magnitude of α and
compare the experimental results.

It can be seen that with the increase of α (also the
decrease of log0.1α), the values of AUC and AP both lift
first, and then gradually reduce after reaching the peak.
When α value is small, the proportion of prediction loss
in total loss decreases. The model ignores prediction loss
which directly related to the recommendation task, and the
performance declines. The optimal performance is achieved
when the α value is 0.000 000 1 on SCD and is 0.000
001 on SDMCD. At this time, the two loss functions are
balanced through α. The model not only makes the score of
positive samples greater than negative samples according to
the constraint of prediction loss, but also capture the high-
order topology information in the social graph through the
constraint of NLGL loss. In the continuous increase of α,
the prediction loss will be much larger than the NLGL loss.
The MIPF model will only take into account the adjacency
matrix of the social graph which is the explicit preference of
users. The implicit preference of users hidden in high-order
information of the social graph will be discarded due to the
negligence of the NLGL loss. That is the reason of the lower
performance when α is too large.

4.4.3 Discussion on the hyperparameter d .

We explore how the dimension of feature and prefer-
ence embeddings affects the performance of MIPF on two
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TABLE 6: Discussion on the parameter α on SCD and SDMCD.

log0.1α
SCD SDMCD

AUC AP @P1 @P5 @P10 AUC AP @P1 @P5 @P10

2 0.810889 0.821376 0.625086 0.789925 0.889650 0.835156 0.834102 0.406441 0.795197 0.889686
3 0.824909 0.853066 0.529130 0.754969 0.867718 0.849474 0.855622 0.457405 0.807237 0.900062
4 0.826260 0.852570 0.543523 0.761138 0.871145 0.851398 0.856395 0.460472 0.810663 0.905543
5 0.831626 0.859338 0.558602 0.767649 0.875600 0.852033 0.856355 0.461255 0.810532 0.907436
6 0.827130 0.858249 0.554489 0.765593 0.874229 0.852153 0.857100 0.462168 0.810336 0.905772
7 0.827465 0.855631 0.539068 0.767992 0.875942 0.851461 0.855225 0.455708 0.808150 0.907207
8 0.825817 0.855669 0.540781 0.767649 0.871145 0.850583 0.854925 0.467846 0.803028 0.902346
9 0.823996 0. 851258 0.541467 0.759767 0.878341 0.848660 0.851148 0.446736 0.804463 0.906946

TABLE 7: Discussion on the parameter d on SCD.

d AUC AP @P1 @P5 @P10

4 0.830507 0.857030 0.629883 0.776559 0.875257
8 0.831626 0.859338 0.558602 0.767649 0.875600
10 0.823631 0.856584 0.541809 0.761138 0.864633
16 0.807139 0.843367 0.616861 0.793352 0.892735
32 0.803613 0.816053 0.616861 0.793352 0.892735
64 0.804800 0.819789 0.613777 0.789582 0 887252

TABLE 8: Discussion on the parameter d on SDMCD.

d AUC AP @P1 @P5 @P10

32 0.835077 0.841435 0.466638 0791151 0.887533
64 0.852153 0.857100 0.462168 0.810336 0.905772
128 0.852843 0.859331 0.467030 0809847 0.905152
256 0.850059 0.857010 0.467552 0.806878 0.902444
512 0.850707 0.857029 0.467210 0.806388 0.902085
1024 0.846809 0.855965 0.467617 0.795556 0.899409

Fig. 6: Performance with different α. Fig. 7: Performance with different d.

datasets. The experiments results about d are shown in Fig-
ure 7. On SDMCD, we can find the performance of AUC and
AP shows an upward trend when d raises from 32 to 128.
This is probably because the smaller embedding dimension
will limit the ability of model to express the information
extracted from user attributes and social graphs. Thereby
the performance of model recommendation decreases when
d is smaller than 128. When d continues growing, the
performance of our model declines. It may due to that the
model will overfit and lose its generalization ability with
excessive dimension of embeddings. Therefore, according
to the experimental results, the optimal values of d are 8
and 128 on SCD and SDMCD. The different optimal values
of d probably due to the number of interaction records
in SDMCD is much larger than that in SCD. User feature
and preference embeddings in SDMCD require a larger
dimension to express more information extracted from input
data.

4.4.4 Discussion on the hyperparameter K .

To investigate how the parameter K affects the performance,
we vary number of negative samples of each positive sam-
ple in the training process. In particular, we try the K value
in the range of {1, 2, 4, 8, 16, 32, 64}. Table 9 summarizes
the experimental results on both datasets. We can get the
conclusion that the performance of MIPF is basically not
affected by the change of K value on SDMCD. While on
SCD, increasing the value of K will slightly improve the
performance. The number of interaction records in SCD is
significant less than that in SDMCD. Therefore, increasing

the amount of negative samples in the training set may
expand the dataset and improve performance on SCD.

4.4.5 Discussion the performance on user groups with dif-
ferent number of interation records.

We want to explore the performance of MIPF on data with
different sparseness. We compare it with the two baseline
methods, Graph Attention Model and NGCF. Users in the
testing set are divided into four groups according to the
number of user interaction records in the training set. The
performance of methods on different user groups shows
their applicability on datasets with different sparseness lev-
els. For each user in the testing set, we record the ranking
of his positive user in his candidate user list. And we
calculate the average ranking of positive users for each user
group. The lower average ranking denotes the method has
a higher probability to recommend the correct user. Exper-
imental results are shown in Figure 8, our MIPF method
can consistently outperform compared baseline methods
on user groups with different degrees of sparseness. In
addition, MIPF has better performance on user groups with
6-20 interaction records per user. This is probably because
when users have too few interaction records, it is difficult
to learn accurate user representations. Furthermore, the
performance of MIPF deteriorates on user groups with more
than 20 interaction records per user. It might because over
much social connections will bring noise in the process of
graph embedding.
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TABLE 9: Discussion on the parameter k on SCD and SDMCD.

k SCD SDMCD

AUC AP @P1 @P5 @P10 AUC AP @P1 @P5 @P10

1 0.831626 0.859338 0.558602 0.767649 0.875600 0.852843 0.859331 0.467030 0.809847 0.905152
2 0.829708 0.858485 0.574023 0.771761 0.876628 0.852746 0.859168 0.465464 0.809423 0.905511
4 0.829589 0.856152 0.551405 0.757368 0.868403 0.852499 0.861670 0.475872 0.809619 0.902020
8 0.828249 0.852462 0.558259 0.775531 0.880740 0.852511 0.857941 0.462886 0.810467 0.905739

16 0.830360 0.857315 0.555860 0.766278 0.875257 0.851443 0.854816 0.455382 0.809097 0.907338
32 0.836027 0.862984 0.555517 0.768677 0.871830 0.852704 0.858995 0.465138 0.808738 0.905576
64 0.835078 0.866280 0.556546 0.771761 0.881768 0.852681 0.858735 0.464615 0.808738 0.905543

Fig. 8: The Performance of MIPF and two comparison methods on user groups with different number of interaction records
on SCD and SDMCD. The y-axis is the ranks of positive users in candidate user lists. The lower average ranking denotes
the better recommendation for users.

5 CONCLUSION

This paper presents an online dating recommendation
model MIPF by matching individual preferences with fea-
tures. It fused user attributes and social graph to conduct
user feature embeddings and preference embeddings. The
user preference embedding contains explicit preference ex-
tracted from social links which is the adjacency matrix of
user’s relationship network, and implicit preference, the
latent topology information in social graph. In order to
capture the implicit preference, we use a graph embedding
method with attention mechanism guiding the simulation
random walk. Experiments demonstrate that our MIPF out-
performs comparing methods, and the quantitative results
of ablation study verify the effectiveness of our contribu-
tions. There are potential future directions of this work.
First, we only use scalar and digital attributes, and ignore
the free text information such as self-introduction of users.
With the help of the latest Natural Language Processing
technology, extracting the information in free text can make
the model achieve better performance. Secondly, the current
graph embedding methods have relatively high require-
ments for running memories when extracting high-level
structural information. Thus, MIPF also has a limit on the
scale of datasets, which reduces its scalability.
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